Mapping the brain thanks to neuroscience publications

Jérome Dockes Gaël Varoquaux

Ínría

A vast literature

A vast literature

overwhelming

overlapping lives We

ind pars opercularis). Music memory > speece a ory identified a left posterior emporal/inferior narietal region and bilateral medial

TABLE 2 Locations, peaks and cluster size for significant voxel clusters for each condition's ALE and for each contrast of interest

Condition	Anatomical locations	Peak coordinates	Voxels
Music passive latering	Left inferior frontal ganas (para opercularis)"	45, 10, 25	32
	Left medial frontal gyrus", left subcallosal gyrus	-2, 26, -14	65
	Left medial frontal gyrus'	-2, 2, 62	45
	Left postcentral gyrus", left inferior parietal lobule	-34,-35,54	27
	Left superior temporal gyrus', left transverse temporal gyrus, left middle temporal gyrus, left insula	-52,-20, 6	2073
	Right interior trontal gyrus'	45, 10, 25	43
	Right precentral gynus', right postcentral gynus, right middle frontal gynus	52,-2,44	173
	Right superior temporal gyrus', right transverse temporal gyrus, right middle temporal gyrus, right Insula	58,-20, 6	2154
	Right insula", right inferior frontal gyrus, right precentral gyrus	42, 14, 0	205
	Right lingual gynas', right culmen	16,-54,-2	27
Music discrimination	Left medial hontal gyrus', left middle hontal gyrus	-8,-4,58	224
	Left precentral gyrua", left postcentral gyrus, left inferior parietal lobule	-48,-12,48	250
	Left precentral gyrua", left interior trontal gyrus (para opercularis)	-50, 2, 25	67
	Left superior temporal gyrus", left transverse temporal gyrus, left precentral gyrus	-54,-15,8	239
	Left superior temporal ginus", left middle temporal ginus	-58,-34,8	92
	Left insula", left interior frontal gyrus (pars triangularis)	-34, 22, 2	45
	Left cerebelum'	-28, -62, -24	127
	Right interior trontal gyrus", right middle trontal gyrus.	52, 12, 28	55
	Right precentral gynus', right middle frontal gynus	45,-5,44	170
	Right superior temporal gyrus', right middle temporal gyrus	62,-24,8	310
	Right superior temporal gyrus', right precentral gyrus, right insula	50, 6, -2	91
Music error detection	Left medial trontal gyrus'	-4,-4,58	49
	Left superior temporal ganue", Left transverse temporal ganue, Left contentral orani. Telt trada	-50,-18,8	1445
	Left interior parietal lobule", left supramarginal gynus, left angular gynus	-40,-48,40	41
	the second se		

A vast literature

TABLE 2 Locations, peaks and cluster size for significant voxel clusters for each condition's ALE and for each contrast of interest La martina -45, 10, 25 Stereotaxic coordinates -2.25-14 -2, 2, 62 45 44 - 35 -52, -20, 6 45, 10, 25 Right precentral gyrus', right postcentral gyrus, right middle frontal gyru Right superior temporal gyrus', right transverse temporal gyrus, right middle temporal gyrus, right 55,-20, 6 2154 Right insula", right inferior frontal gurus, right precenter guru 42, 14, 0 . left middee frontal ovru ak coordinates -48,-12,48 259 canus", left transverse temporal canus, left precentral canus -54.-15.8 225 anus", left middle temporal canus -55.-34.8 -46, 10, 26 -34, 22, 2 us", right middle frontal owus 52, 12, 28 -2, 26, -14right middle frontal gamus 45.-6.44 -50 cal gyrus", right middle temporal gyrus FIGURE 1 (A) Representative sagittal slices of the ALE for passive latening to speech (B) Speech vs. music passive listening contrasts results, p < 0.05 corrected. oral gyrus", right precentral gyrus, right insula 50, 6, -2 -2, 2, 62 -50.-18.8 1440 Music Tasks vs. Speech Tasks ns as well as lef nd pars opercularis). inferior frontal overlapping regions of eth and music processing. We Music memory > speece a ory identified a left posterior Left interior parietal lobule", left supramarginal gynus, left angular gynus now turn to the question of r temporal/inferior parietal region and bilateral medial

Brain mapping from the literature

We downloaded 140K scientific publications (as XML)
 Extracted brain coordinates from 14K

Text2brain

Recognized neuroscience terms

<u>Syntactic</u> priming and the <u>lexical</u> boost effect during sentence production and sentence comprehension

Fit a regression

[Dockès... 2018]

G Varoquaux

Regression coefficients

"left amygdala", "amygdala", "right amygdala"

"anterior cingulate"

Semantic: using related words

"Hungtington" only appears in 21 articles with coordinates
Articles without coordinates capture word relationships
Encode "Hungtington" using other related words

Semantic: using related words

Mapping the brain thanks to neuroscience publications a.k.a. having the computer read the publications

Text2brain

Mapping the brain thanks to neuroscience publications a.k.a. having the computer read the publications

Text2brain

Open access: publications Preferably structured (XML, not PDF)

Mapping the brain thanks to neuroscience publications a.k.a. having the computer read the publications

Text2brain

Open access: publications Preferably structured (XML, not PDF)

J. Dockès, D. Wassermann, R. Poldrack, F. Suchanek, B. Thirion, and G. Varoquaux. Text to brain: predicting the spatial distribution of neuroimaging observations from text reports. *MICCAI*, 2018.

Y. Schwartz, B. Thirion, and G. Varoquaux. Mapping cognitive ontologies to and from the brain. In *NIPS*, 2013.

G. Varoquaux, Y. Schwartz, R. A. Poldrack, B. Gauthier,D. Bzdok, J. Poline, and B. Thirion. Atlases of cognition with large-scale brain mapping. *In rev*, 2018.