Making Open Data Work for Research and Researchers

Sabina Leonelli
Exeter Centre for the Study of Life Sciences (Egenis)
& Department of Sociology, Philosophy and Anthropology
University of Exeter
@sabinaleonelli
MLE on Open Science

Jan 2017 – Jan 2018, 13 countries

Three topics:

1. The potential of altmetrics to foster Open Science
2. Incentives and rewards for researchers to engage in Open Science activities
3. Guidelines for developing and implementing national policies for Open Science

MLE on Open Science: 4 Thematic reports

| Different types of Altmetrics
 (Kim Holmberg) | Altmetrics and Rewards
 (Kim Holmberg) | Incentives and Rewards to engage in Open Science Activities
 (Sabina Leonelli) | Implementing Open Science: Strategies, Experiences and Models
 (Sabina Leonelli) |
|------------------|------------------|------------------|------------------|
| Conclusions: | Issues are: | The report suggests that incentives and rewards should be applied to three groups of key stakeholders: (1) researchers; (2) research-performing institutions and funding bodies; and (3) national governments. | This report
 proposes a National Roadmap for the Implementation of Open Science
 outlines key priorities and principles underpinning the implementation of Open Science at the national level
 reviews existing experiences in developing and supporting OS activities and related policies
 summarises the strategies, lessons learnt and models |
| • Altmetrics are not yet being used for research evaluation purposes.
 • Altmetrics hold a lot of promise, but it is too early to use them for research evaluation and decision making.
 • More research is needed. | • Not enough evidence
 • Limitations of (proprietary) data sources
 • Methods are not yet open | |
| http://europa.eu/!bj48Xg |

H2020 POLICY SUPPORT FACILITY | MLE on Open Science
1. INTRODUCTION
2. METHODOLOGY
3. BACKGROUND OPEN SCIENCE
 • The status of Open Science in Europe – implementation and aspiration
 • Altmetrics
 • Incentives and rewards
 • National initiatives for open science
4. POSITIONS AND PERSPECTIVES FROM MEMBER STATES AND PARTICIPATING COUNTRIES
5. LESSONS LEARNED
 • Key concerns and best practice
 • Priorities
 • Roadmap for the implementation of Open Science
 • Conclusions and Next Steps
Roadmap for Open Science Implementation

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>Identify key stakeholders and Open Science champions</td>
</tr>
<tr>
<td>Plan</td>
<td>Devise national strategy through consultation with stakeholders</td>
</tr>
<tr>
<td>Incentivize</td>
<td>Change reward system to incentivize all aspects of Open Science</td>
</tr>
<tr>
<td>Promote</td>
<td>Encourage critical and informed thinking</td>
</tr>
<tr>
<td>Support</td>
<td>Participate in international initiatives</td>
</tr>
<tr>
<td>Implement</td>
<td>Implement strategy, starting from Open Access</td>
</tr>
<tr>
<td>Monitor</td>
<td>Monitor and tackle emerging issues as they arise</td>
</tr>
</tbody>
</table>
The key role of data curators and infrastructures

- Making data FAIR requires
 - coordination and interoperability of data infrastructures
 - making data *mobile* and *useful as evidence* across sites, contexts, uses
 - making data infrastructures trustworthy and user-oriented
 - ensuring the fairness of data handling and implications

- Major challenges to realising that potential
Low Awareness of OS Activities and Tools

Source: EU Working Group on Education and Skills under Open Science, 2017
Complexity of tools and skills required to make data FAIR

<table>
<thead>
<tr>
<th>Table 1</th>
<th>General tools for data management.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of tool</td>
<td>Function</td>
</tr>
<tr>
<td>Open lab books</td>
<td>Digital and shareable version of traditional lab books</td>
</tr>
<tr>
<td>Generic open data repositories</td>
<td>General storage for many different data types</td>
</tr>
<tr>
<td>Specific databases</td>
<td>Fine-grained datasets that require subject-specific metadata</td>
</tr>
<tr>
<td>Data portals</td>
<td>Aggregating and providing visibility for various databases and resources</td>
</tr>
<tr>
<td>Bio-ontologies</td>
<td>Keywords for the annotation, ordering and retrieval of data</td>
</tr>
<tr>
<td>Metadata standards</td>
<td>Standardization of experimental data collection</td>
</tr>
<tr>
<td>Identifiers for research materials</td>
<td>Annotation and retrieval of research materials on which experiments were originally performed</td>
</tr>
</tbody>
</table>
| Informatics standards | Software tools helping to format, store and visualize data | Agroportal^

Data management and best practice for plant science

Sabina Leonelli, Robert P. Davey, Elizabeth Arnaud, Geraint Parry and Ruth Bastow

(source: Leonelli et al 2017, Nature Plants)
Confusion Among Researchers Over

- **What openness means in practice**
 - Some common interpretations: “free of license”, “free of ownership”, “under CC-BY license”, “common good”, “good enough to share”, “unrestricted access or use”, “accessible without payment” (Grubb & Easterbrook 2011; Levin, Leonelli et al 2016)

- **How can it be implemented**

- **What is legal** (how does openness apply to commercially or security sensitive research?)

- **What is ethical** (how to protect individuals & groups from harm?)

- **What is recommended by whom** (funders, learned societies, publishers, research institutions, governments..)
Tracking **data journeys**

To understand how data move from sites of *production* to sites of *dissemination* and *interpretation/use*, and with which consequences

- **Approach:** philosophy, history and social studies of science
- **Focus:**
 1. **Databases** as windows on material/conceptual/institutional labor required to make data widely accessible and useable
 - labels & software to classify, model, visualize, retrieve data
 - management of infrastructure and communications
 2. **Data re-use cases** to investigate
 - conditions under which data can be interpreted
 - implications for discovery & what counts as good research
 - role of Open Science movement in knowledge generation
Interoperable Data Infrastructure

Diverse data (re)uses

Data sources
Green research – plant science and food security
High Throughput Phenotyping

Six phases involved in data journey from production to analysis:

[1] Preparing specimens
[2] Preparing and performing imaging
[3] Data storage and dissemination
[4] Coding for analysis
[5] Image filtering
[6] Image analysis
[6] Calibration and further analysis
Digitalisation of Phenotype Workflow

Network folders on IITA server

Field Layout & trait file

Fieldbook (tablets, mobiles)

Curated data

Data export

Data collection
Red research – human health and wellbeing
Medical insights from non-human research: cell regulation in yeast

Welcome to PomBase
PomBase is a comprehensive database *Schizosaccharomyces pombe*, providing functional annotation, literature curation, scale data sets

(b)

DNA replication

Spindle pole body duplication

Chromosome segregation; nuclear division

G1

G2

S

M

START

Spindle formation

Nuclear migration

Cytokinesis

Bud emergence
From somatic mutations to clinical assessment

The COSMIC Project

Expert knowledge curation

Large-scale cancer genomics

Curate, Integrate, Combine

http://cancer.sanger.ac.uk/
From clinical assessment to data re-use for research

SAIL secure linking → SAIL digital interface → Information governance → Project design of prospective data users

Data providers

- Primary Care GP, Patient Episodes Database;
- Cancer Registry for Wales, Congenital Anomalies;
- Individual research project dataset

The Secure Anonymised Information Linkage (SAIL) Databank

SAIL is a world-class, anonymous data linkage system that securely brings together the widest possible array of routinely-collected data for research, development and evaluation. Robust Governance arrangements underpin all areas of our work so that SAIL represents a valuable data resource, whilst complying with data protection legislation and confidentiality guidelines.
Bringing green and red together: human and environmental health
Medical and Environmental Data Mash-up Infrastructure
Lessons learnt
Epistemic Trouble with Online Data Sources

- Research data collections available online represent highly selected data types from a small proportion of available sources.
- Selection based on convenience, tractability of the data and political-economic conditions of data sharing, rather than on epistemic choices.
- Peer reviews structures unclear and often lacking.
- Misalignment between IT solutions and research questions/needs/situations (e.g. problems with access to software).
- No sustainable plans for maintenance and updates of most data infrastructures.
- No sustainable plans for tracking and accessing related samples/materials.
Lesson Learnt 1: *Context-Specific Curation Is Key to Data Reuse*

- **Field-specific data curation is essential** to data re-use and interpretation, yet badly underestimated and not rewarded
 - Do not throw the baby out with the bathwater: value of long-standing research traditions and reviewing methods
 - Crucial to remain user-friendly and fulfil expectations of users
 - Need case-by-case judgments on research quality and fruitful modes of data sharing
 - Pluralism in methods and standards contributes robustness to data analysis, and reduces risk of losing system-specific knowledge
Lesson Learnt 2: Long-Term Maintenance Is Key to Trustworthiness

- Regular updates across nested infrastructures
- Business plan for long-term sustainability
- For OS, this means:
 - Clear relation between international field-specific databases, international clouds, national clouds, institutional repositories
 - Make sure each node is resilient and system is not crippled by individual node failure (now all independently funded, typically in the short term)
Lesson Learnt 2: Long-Term Maintenance Is Key to Trustworthiness

- Particularly important since hard to guarantee data quality
- Criteria for what counts as good data – or even as data altogether – vary dramatically even within the same field
- Role of confidence assessments on data quality and reliability (again: field-specific curation is key)
Substantive disagreements over data management:

- Methods, terminologies, standards involved in data production and interpretation

- What counts as data in the first place (data as a relational category, Leonelli 2016, 2018)

- What counts as meta-data
Lessons Learnt 3: Which Data and Why?

- Re-use often linked to participation in *developing* data infrastructures
 → rarely the case for busy practitioners, considering also gap in skills

- Indiscriminate calls for open data can lead to serendipity in what data are circulated and when
 → Need explicit rationale around priority given to specific data types and sources (e.g. ‘omics’ in biology)
Sharing of related materials via reliable stock centers and collections: rarely available & coordinated with databases

E.g. model organism stock centres, biobanks
114 European Museums
21 Countries

Largest ever agreement to unify European natural science collections
Ethical, social and security concerns increase quality and re-usability of data/infrastructures
- Related skills are as central to data science as computational skills
- Data re-use requires well-informed, sustainable, inclusive, participative development of data infrastructures

Open Data and Data Science training: Data science is not a branch of engineering, but rather requires input from all fields, esp. social science and humanities
Conclusion: No reliable and effective (Open) science without trustworthy data curation

- Effective, context-specific curation
- Sustainability and maintenance
- Built-in ethical safeguards, social relevance and resilience
- Robustness (plan B if specific standards/services fail)
- Criteria for data and meta-data inclusion and formatting
- Clear link to samples and specimen collections
Conclusion: building on the French National Plan for Open Science

- Clear national commitment and institutionalization (Chief Data Officer)
- Promises to ease legal complexities of Open Data
- Promotes shift in research evaluation to recognize Open Science: data curation deserves specific attention!
- Promotes Open Data while recognizing disciplinary diversity
 - Welcome emphasis on role models and OS champions
Research data collections available online represent highly selected data types from a small proportion of available sources.

Selection based on convenience, tractability of the data and political-economic conditions of data sharing, rather than on epistemic choices.

Peer reviews structures unclear and often lacking.

Misalignment between IT solutions and research questions/needs/situations (e.g. problems with access to software).

No sustainable plans for maintenance and updates of most data infrastructures.

No sustainable plans for tracking and accessing related samples/materials.
Research funded by European Research Council grant no 335925, ESRC grant ES/P011489/1, ESRC, MRC & NERC MEDMI Grant, Leverhulme Trust Grant “Beyond the Digital Divide”, Australian Research Council Discovery Grant “Organisms and Us”

French translation “La recherche scientifique à l’ère des Big Data. Cinq façons dont les données nuisent à la science, et comment la sauver » available from April 2019
Variously defined by

- the use of new digital tools
- a specific set of values
- practices of collaboration and sharing
- a view of the research workflow and related governance

Platform to debate what counts as science, scientific infrastructures and scientific governance, and how results should be credited and disseminated
The Value of FAIR Data

Potential to improve

- pathways to and quality of discoveries
- uptake of new technologies
- collaborative efforts across disciplines, nations and expertises
- research evaluation, debate and transparency
- appropriate valuation of research components beyond papers and patents
- fight against fraud, low quality and duplication of efforts
- legitimacy of science and public trust
- public understanding and participation
Widespread agreement on three aspects:

- **GLOBAL SCOPE**: affects all stages of the research process, its implementation involves a wide set of governance structures.

- **SYSTEMIC REACH**: involves systemic shift in current practices of research, publishing and evaluation.

- **LOCAL IMPLEMENTATION**: its implications for any one research systems need to be considered with reference to its specific characteristics -- thus the mechanisms through which OS is implemented are likely to vary.
This talk discusses the conditions under which Open Data can be effectively disseminated, mined and reused so as to be fruitful to research and provide a platform for new discoveries. For Open Data to benefit research, considerable resources need to be invested in the developing strategies and tools that facilitate data sharing, as well as in assessing and regularly re-evaluating the scientific, social, cultural and economic implications of such strategies. I demonstrate this through an examination of the history and current characteristics of existing practices of data management and re-use across the biological and biomedical sciences. I focus specifically on the study of ‘data journeys’, that is the ways in which data are made to travel beyond the sites in which they were originally produced. Such study reveals several key challenges for Open Science implementation, which I discuss in detail. I shall conclude that adequate, labour-intensive data curation is crucial to tackling these challenges in ways that are reliable and sustainable in the long term.
Lesson Learnt 1: Context-Specific Curation Is Key to Data Reuse

- Pluralism in methods and standards contributes robustness to data analysis, and reduces risk of losing system-specific knowledge

- **Interoperability is preferable to integration**
 - Standards ad formats are key
 - Yet reliance on overly rigid standards creates exclusions and obliterates system-specific knowledge
 - Data linkage methods are best when it is possible to disaggregate
The Secure Anonymised Information Linkage Databank

SAIL is a world-class, anonymous data linkage system that securely brings together the widest possible array of routinely-collected data for research, development and evaluation. Robust Governance arrangements underpin all areas of our work so that SAIL represents a valuable data resource, whilst complying with data protection legislation and confidentiality guidelines.